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Abstract
Smart contracts are a basic building block of Web3, enabling
users to transact on data in a decentralized manner. Smart
contracts, however, are limited by the blockchains they run
on and cannot access external state.

Burrata enables smart contracts to operate on data from
familiar Web2 services by relying on clients to bring this
data to Web3 with trust. Burrata focuses on bridging this data
with efficiency and privacy across multiple chains: a typical
Burrata data transfer on Ethereum costs about 20,000 gas (1/3

the cost of an ERC-20 transfer), occurs in a single transaction
and supports selective disclosure of personal data.

1 Introduction

Web3 is a promising new platform for supporting an ecosys-
tem of decentralized applications based on blockchains. The
basic building block of these applications are smart contracts,
which enable users to transact on data without a central gate-
keeper: public-key cryptography is used to prove ownership
of accounts, and permissionless consensus engines execute
smart contract code which define operations on data. Smart
contracts are used to build tokens and NFTs, decentralized
exchanges (DEXes) such as OpenSea [28] and Uniswap [3],
DeFi applications such as 1inch [1] and Aave [2] — and have
the potential for many more applications.

A limitation of Web3 is that smart contracts cannot directly
access external state from familiar Web2 services: the con-
sensus engines which run blockchains rely on state machine
replication (SMR) [22], which requires that each replica ob-
serve the same state transitions. External state, however, may
vary when accessed by each replica. For example, fetching
a web page may yield a different result depending on the
replica’s geographical location or when the replica reads the
data. As a result, most blockchains limit the data smart con-
tracts can access to data internal to the blockchain, greatly
limiting the applications which can be built in Web3. For in-
stance, a smart contract cannot directly check if a user is from

a particular country, if they have sufficient funds in their bank
account, or even the current weather.

To address this gap, the Web3 community relies on oracles
to bring external data into Web3 [5, 7]. Oracles bring data
into Web3 by listening to events on blockchains, servicing the
event on oracle servers in Web2, and then posting the result
back on the blockchain. While oracles form the foundation
for many Web3 services today, such as DEXes and cross-
chain bridges, oracles have a number of idiosyncrasies which
limit their uses. For instance, a typical oracle exchange fol-
lows an asynchoronous request-reply pattern, which requires
two transactions and delay between request and completion.
These actions are published on the blockchain, which lack pri-
vacy and opens oracles to front-running attacks. In addition,
the data is collected by oracle nodes, which cannot access
personal user data.

Burrata takes an alternative, client-driven approach which
maintains user privacy while enabling smart contracts to ef-
ficiently operate on Web2 data. Instead of relying on third-
party oracles, users drive Burrata to collect data from data
hubs, which are then verified by lightweight contracts on the
blockchain. The data verification is achieved with a single
signature check, with a total cost of about 20,000 gas on
Ethereum (1/3 the cost of an ERC-20 transfer). Burrata is fully
flexible on the types of data which can be delivered, which
can be structured, selectively disclosed, and even as complex
as a zero knowledge proof. Since Burrata is client-driven,
the contract can access personal data, such as data from web-
sites the user has logged in to. Burrata delivers Web2 data to
Web3 smart contracts in a single transaction, which simplifies
the programming model by eliminating the need to design
an asynchoronous upcall flow, and avoids the need to design
aggregation protocols to prevent front-running. Burrata is
scalable and deployed on multiple chains.1

The remainder of this paper is organized as follows:

• We provide background on existing techniques to deliver
data to Web3 and distinguish them from Burrata.

1Today, we are deployed on 8 EVM based chains and the NEAR protocol.
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2 BACKGROUND
• We describe the Burrata architecture and show how the

Burrata frontend works with data hubs and contracts to
deliver data to Web3.

• We show an example of how Burrata can be integrated
with a smart contract and a corresponding decentralized
application (dApp).

• We evaluate how Burrata compares to oracle and token
based systems.

• We discuss future work.

2 Background

Web3 is a platform which supports decentralized applications
that are built with smart contracts running on blockchains.
While anyone can inspect the data in these blockchains, the
smart contract cannot access any data outside the blockchain.
This is distinguished from traditional Web2 services, which
provide personal data, which is private and only accessible
by authorized users.

Web2 data, however, is critical for many emerging Web3 ap-
plications. A DeFi application, for example, may wish to ver-
ify a user has a minimum bank account balance or credit score.
A decentralized autonomous organization (DAO) [19] might
want to verify that no human is allowed to have multiple votes
(sybil resistance [4]). A rental application might want to check
that a human has signed a legally binding document. These
use cases all require a way to bridge Web2 data into Web3.

2.1 The Web3 Glass Data Prison

Unlike traditional Web2 applications, Web3 smart contracts
cannot simply make a request to an external service to fetch
data. To understand why, we will briefly describe how a user
interacts with a typical blockchain.

When a user wants to interact with a smart contract, the
user signs a transaction which contains the address of the
contract the user wishes to interact with. This transaction is
submitted to the blockchain to a pool of transactions known as
the mempool. The blockchain is made resilient to failures and
malicious actors through a technique known as state machine
replication (SMR) [22]. SMR divides the blockchain into
replicas. At some interval, the replicas agree on a set of trans-
actions from the mempool and aseemble these transactions
into a block. Each replica executes the transactions in the
block in the same order. If the execution of each transaction
is deterministic and each replica is correct and not malfunc-
tioning, then all the replicas will arrive at the same new state.
In the case of the users’ transaction, each replica will load
the code of the smart contract, run it, and save the effects of
running the transaction to its local state.

While SMR is a powerful construct to build blockchains
upon, it also is limiting: if the transaction is not determinis-
tic, then all the replicas will not arrive at the same new state.
Accessing data from external sources is often not determinis-
tic: for instance, two replicas might observe different results
based on the time they read the data. In order to ensure that
executing a smart contract is deterministic, blockchains limit
the state contracts can access to internal state.

In effect, each blockchain is a glass data prison: while the
internal state of the blockchain is visible to everyone, once
transactions enter the blockchain, they cannot interact with
the outside world.

2.2 Oracles to the rescue?
To build meaningful Web3 applications, smart contracts must
be able to consume external data. Oracles have become the
basic primitive to bring data into blockchains. Oracle net-
works sit between Web3 and Web2: they listen for events on a
blockchain, retrieve and form consensus on Web2 data, and
post the results back to the blockchain.

Oracles are used extensively in Web3, and used by a wide
variety of applications. Chainlink [8], for example, provides
a programmable oracle network and provides price feeds,
among other data, to projects such as Aave [2] and com-
pound [14]. Wormhole [27] is another project which provides
a cross-chain message passing protocol which uses a network
of oracles called guardians to pass verified messages between
chains. Pyth [26] is yet another project with a slight variation
on the traditional oracle model by enabling users to stream
and publish Web2 data on a blockchain by calling a contract.

A major downside to oracles is that they are not private.
Requests for data are published on blockchains, which opens
the door to front-running attacks and requires the use of mit-
igations such as price aggregation. The data itself is also
published, which may not be a desirable property in many
applications. In addition, oracles typically cannot access in-
dividual private user data, such as websites which require a
login.

Oracles are also asynchoronous, which increases program-
ming complexity and can make user transactions unpre-
dictable. For instance, a user which submits a transaction
to a smart contract which uses an oracle will have to wait
for the oracle network to post the response via an upcall. By
the time the oracle issues the upcall, the data could change,
resulting in the transaction failing. In addition, the user must
pay, directly or indirectly, for the cost of both transactions.

2.3 Data Tokenization
Data tokenization is another alternative to oracles used for
personal data, used by projects such as polymath [25] and
embodied in proposals such as the soulbound token [10, 35,
39]. In the tokenization model, users are issued a token which
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2.4 Verifiable User Data 3 BURRATA ARCHITECTURE
is non-transferrable. This token can contain data from Web2,
or the issuance of the token itself can be dependent on some
condition in Web2 (for instance, if the user has an account on
a specific service). Smart contracts which wish to consume
this data can then check for the presence of this token and read
data from the token when a user interacts with the contract.

While tokens enable users to bring personal data into Web3,
users must mint a token, which can increase friction in using a
Web3 service. The data in a token can become stale, and a user
will incur transaction fees in order to refresh and update the
token. If the data in the token becomes invalid, a Web2 service
will have to monitor the data and submit a transaction to
revoke the token. While the token revocation transaction is
pending, a contract may work on data which is no longer valid.
Finally, this data is published on the blockchain, and contracts
the user does not interact with may use data from their token.

2.4 Verifiable User Data
Systems such as DECO [38] and TLSNotary [32] enable
users to access Web2 data via TLS and SSL with third-party
observers which can only view the encrypted contents of the
session. The user can then generate a zero knowledge proof
which third-party observers can verify using the transcript of
the encrypted session.

While DECO and TLSNotary enable third parties to selec-
tively verify data was accessed, they do not deliver data to
blockchains on their own. Furthermore, users must establish
a TLS session using a special library, which may be incom-
patible with traditional Web2 tooling. Establishing the 3-way
TLS session may especially be a challenge if started from the
client, due to idiosyncrasies in browsers.

2.5 Introducing Burrata
In this paper, we introduce Burrata, which takes another ap-
proach to bringing Web2 data into Web3. With Burrata, users
deliver trusted Web2 data with the transactions they submit
instead of waiting for an oracle to asynchronously retrieve
Web2 data. Unlike tokenization, data does not become part of
the blockchain’s world state, and minting data is not required.
To provide a fully trustless environment, Burrata leverages
systems such as DECO and TLSNotary to enable the verifica-
tion of data retrieved from Web2.

3 Burrata Architecture

The Burrata architecture consists of three components:

Frontend The frontend manages interactions with users.
Decentralized application (dApp) developers call on the
frontend from the users’ browser to initiate collection of
Web2 data that is submitted to the developers’ smart contracts.
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Figure 1: The high-level architecture of Burrata, showing
the interaction between the frontend, data hub and contracts.
Burrata components are solid boxes, developer-provided com-
ponents are in dashed boxes, the Web2 data source is in a
shaded box, and 3rd party components are in a dotted box. A
dotted arrow indicates an encrypted communcation for which
the destination does not have the decryption key.

Data Hub The data hub authenticates users and accesses
Web2 data on their behalf to issue Burrata claims. The claims
that the data hub are verifiable and have a limited lifetime. The
data hub tracks claims that have been issued, manages refresh
and revocation, and supports conversion between different
claim formats.

Contracts The Burrata contracts are called by developer’s
smart contracts to check the validity of claims. The contracts
manage which data hubs are valid, and support the emergency
revocation of claims.

The overall architecture of Burrata is shown in Figure 1.
While Burrata runs on multiple blockchains, such as the
Ethereum Virtual Machine (EVM) [36] and Near [30] with
support for Move-based chains such as Sui [31] in the near
future, for the purposes of this paper, we focus on the EVM
implementation.

To guide the description of Burrata, we first describe an
example dApp called Web3Cabin.

3.1 An example dApp

Web3Cabin is a simple application which allows hosts to rent
a cabin in the woods to renters who rent the cabin for a short-
term stay. The rental is automated, and the host and guest
have recourse in the real world if either party fails to fulfill
their obligations. Both host and renter remain anonymous to
each other unless their obligations fail to be fulfilled.2

2The Web3Cabin code is open source and can be found on Github.
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3.2 Burrata Claims 3 BURRATA ARCHITECTURE
Hosts When a host creates a rental, they create a contract
that governs the terms of the rental and place a Web2 con-
nected lockbox in front of the cabin.

Renters To rent a cabin, a renter deposits payment and
signs the contract. When the renter arrives, the lockbox
releases the keys to the renter, and when the renter checks
out, they return the key to the lockbox.

The smart contract can programatically exchange assets on
the blockchain. For instance, it can generate a token if the
cabin is available and the renter deposits payment. However,
without external help, the contract does not know about the
state of the external world, such as whether the rental contract
was signed, or if the key was returned to the lockbox.

3.2 Burrata Claims
To facilitate the transfer of data between Web2 and Web3,
users collect Burrata claims from data hubs, which can be
verified by Burrata contracts. Claims are typed and names-
paced. For instance, the Web3Cabin might use a claim of
type cabin.contract to represent a signed contract, and
cabin.lockbox to represent the state of the lockbox. Claims
can also contain key-value pairs of data, where a key is a 16
bit integer. For instance, the cabin.contract claim may con-
tain a document id field at key 100, and the cabin.lockbox
claim can contain a state field at key 100.

Data hubs can sign and present claims in a number of pre-
sentation formats, depending on the use case. The default
claim format is the EVM-optimized format (Figure 2), which
is designed to minimize gas usage on EVM blockchains.
Other blockchains can use different formats depending on
what primitives are available. For instance, on chains with
native ed25519 support [9], such as Near [30], Sui [31] and
Solana [37], ed25519 is used and the data hub public key is
added, since recovery is unsupported. Burrata data hubs can
also present verifiable data to be used in a Web2 context as
well, and issues claims conforming to the W3C Verifiable
Credentials specification [21, 34], and in the case of identity,
conforms to the W3C Decentralized Identifier (DID) specifi-
cation [18, 33].

Claims also support services, which turn on additional ver-
ification by the Burrata contracts. These services inject their
data into Burrata claims as a key-value pair separate from the
claim data. For example, a verifiable data service like DECO
or TLSNotary may add information about the data request
and a signature at key 100.

Importantly, claims have a limited lifetime, which mini-
mizes the number of blockchain interactions required when a
claim is revoked. Each hub keeps track of the “live” claims
that is has issued and only needs to revoke claims which are
“in flight”. Users need to refresh claims, but this is handled
automatically by the frontend: as long as a previously issued
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Figure 2: A Burrata claim, in an EVM-optimized presentation
format.
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1 async function handleRent(e : event) {
2 const rental_id = e.target.getAttribute("

rentalId");
3 const document_id = e.target.getAttribute("

documentId");
4 const claim = getClaim({
5 key: DOCUMENT_HUB_PUBKEY ,
6 type: "cabin.contract",
7 args: {
8 document_id
9 },

10 input_claims: [{
11 key: IDENTITY_HUB_PUBKEY ,
12 type: "cabin.identity.name"
13 }]
14 })
15 return rentalContract.rent(rental_id , claim , {

value: deposit } );

Figure 3: Modifications to the Web3Cabin frontend code,
showing the new getClaim() call.

claim has not been revoked, a data hub will sign the same
claim, updating the expiration and put it back in the “live” set.

3.3 Using Burrata

To use Burrata, the Web3Cabin developer links to both the
Burrata frontend SDK, and the Burrata contracts. Suppose that
the Web3Cabin developer has already built the frontend that
the hosters and renters use to manage and make reservations,
as well as the contracts that facilitate payment and handle
reservations. Now, the developer needs to bring in Web2 data
which validates that the renter has signed the contract and the
state of the lockbox.

First, the developer needs to create the claim types which
carry this data. The developer can either choose to deploy
their own data hub, or use a data hub deployed by Burrata
with existing integrations3. For the purposes of this paper, the
developer chooses the Burrata deployed integrations, and cre-
ates a claim for document signing called cabin.contract
and a claim form the lockbox called cabin.lockbox. In ad-
dition, the developer would like to ensure that the name of
the person signing the document matches a legal identity
document in their possession, so they create a claim called
cabin.identity as well. cabin.identity is not used on
the blockchain. Instead, cabin.contract is configured to
only be issued if the name of the signer matches the name in
the cabin.identity claim.

Next, the developer modifies their frontend to make a call
to the Burrata frontend SDK before calling their contracts.
Before making the call to rentCabin() function, the de-

3Burrata comes with a number of pre-deployed integrations which provide
identity, financial data, document signing and more. For more details, see
http://burrata.xyz.

1 contract RentalContract {
2
3 ...
4
5 function rent payable (bytes32 rental_id ,

bytes calldata claim) {
6 bytes claim_data = Burrata.checkClaim(

claim , "cabin.contract");
7 bytes32 document_id = bytes32(Burrata.

extractClaimData(claim_data , 100));
8 if (document_id != rentals[rental_id].

contract_id) {
9 revert WrongContractSigned();

10 }
11 if (msg.value < rentals[rental_id].value)

{
12 revert DepositTooSmall();
13 }
14 ...
15 }
16 }

Figure 4: Modifications to the Web3Cabin solidity contract
code.

veloper calls the Burrata getClaims() function, indicating
the public keys of the data hubs and the types of claims
to be retrieved. For each claim, options can also be spec-
ified which are passed on to the hubs. For example, the
cabin.contract claim takes a document_id field. In ad-
dition, an input_claims field specifies which claims should
be retrieved and sent to the hub. cabin.contract takes a
cabin.identity so that the document signing data hub can
ensure that the signature matches the legal name of the user.
The developer then adds the collected data as the final param-
eter to their contract call. The collected claims data is sent as
calldata in the users’ transaction. When the user’s browser ex-
ecutes the getClaims() function, the user is presented with
an interface which collects the required data.

The contract code for Web3Cabin now needs to be mod-
ified to take the updated data and verify that it is correct.
The changes to Web3Cabin are shown in Figure 4. The
collected claims data is a calldata parameter, which costs
only 16 gas per non-zero byte. An average 100 byte claim
costs 1600 gas, which is about 2% of a typical ERC-20 trans-
fer [15]. The calldata is then passed to the checkClaims()
function, which takes the name of the claim to be checked,
and returns the claim data. The function errors out if the
claim is invalid. Since the contract needs to check that the
document_id matches the contract the host has created, the
contract calls extractClaimData() with the 100, the key for
document_id, and checks that it matches what is stored for
the host. In the checkout() function, a similar mechanism
is used, but the lockbox_id (100) and lock_state (101)
fields are checked instead.
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3.4 Contracts

The Burrata contracts contain the logic for checking whether a
claim is valid or not as well as the valid data hubs and revoked
claims. The API of the contracts are shown in Figure 5. The
Burrata contract is replicated across all chains that we support.
We expect the state of the contract to be updated infrequently,
only when a new data hub or claim type is added, or when a
claim is revoked.

When a developer calls the checkClaim() function, a con-
tract call is made into the Burrata core contract. The core
contract first uses the ECRECOVER precompile to recover the
public key of the data hub that signed the claim and retrieves
the hub data. It then checks to make sure that the hub is
authorized to sign messages for the given claim type. This
check consumes 2 SLOAD operations, the costliest part of the
check. The contract then checks if tx.sender matches the
wallet address the claim was issued to. The reason tx.origin
is used for the check instead of msg.sender is to ensure
that no one else can use the claim through an intermediate
smart contract. Support for multi-signature wallets is han-
dled through the frontend, which inserts the correct wallet
address into the claim based on the final sender of the claim.
Using tx.origin is not a security risk because it not used
for authorization but to check that the claim owner holds the
private key to the wallet. Otherwise, a claim could be used by
multiple users. The checkClaim() function then checks if
services are enabled for that claim type. For instance, if data
verification is turned on, the the service handler for data verifi-
cation is called (100) with the payload in the claim. The nonce
for the claim is then checked to make sure that an explicit
revocation has not occurred. Finally, the expiration time of the
claim is checked. The expiration time is expected to be fuzzy,
so an error of ±1 minute is expected and the contract is not
vulnerable to timing attacks. If all checks pass, the function
returns with the claim data which the developer can access
using the library extractClaimData() function. Otherwise,
the function errors and causes the transaction to revert.

Another contract, the Burrata Registry, is responsible for
maintaining the Web2 endpoints of the data hubs. This con-
tract is primarily used for clients to find data hubs and not
called by other smart contracts. To store flexible document-
based data, the contracts only store IPFS [6] hashes, and the
IPFS document contains the full data for the registry.

Finally, the Burrata governance contract handles gover-
nance, such as deciding which hubs and types are enabled.
The details of the governance contract are outside of the scope
of the paper.

3.5 Data Hubs

The data hubs are at the core of the system, bridging data from
Web2 to Web3. While we refer to the data hubs as one com-
ponent in the rest of the paper, they are actually composed of

a user-facing interface, known as the onboarding mechanism,
and a backend, which services claim requests. Each data hub
services one or more integrations, which are connections to a
Web2 provider.

3.5.1 Onboarding

The onboarding mechanism is the user-facing part of a data
hub. The purpose of onboarding is to collect data from the
user’s browser and forward that data to the backend. To that
end, onboarding is usually a static page, served in IPFS.

When the onboarding page is opened by the frontend, it
is given an onboarding_payload, which starts a flow in the
users browser. For instance, in the case of an identity claim, a
user can be asked to take a picture of their identity documents,
or for a signature claim, the user can be presented with a
document to sign.

Importantly, the onboarding page is completely untrusted:
the users browser can do anything with the page, but it is ex-
pected that this interaction results in a change that the backend
can query. For instance, in the case of an identity service, the
onboarding_payload could consist of a token which opens
the identity provider’s web flow, and the backend could then
query whether the flow succeeded or not. Optionally, the flow
may return data to the hub, onboarding_return. However,
this data is untrusted but could be used to check for instance,
if a user logged in successfully via OAuth.

This flow matches many familiar Web2 services where
developers are issued a “publishable” key and a “private” key
for their backends. In fact, many of our integrations simply
link with the Web2 services’ SDK.

3.5.2 Backend

The backend component interacts with the frontend to issue
claims. It exposes a single websocket, which is used by the
client to manage claims in an RPC-like fashion, the API is
shown in Figure 6.

The first operation the backend expects is authentication
of a users’ wallet. In order to authenticate the user’s wal-
let, the frontend sends a message signed by the user in an
AuthRequest message. For EVM, the hub expects a signed
message in the EIP-4361 (Sign In With Ethereum) for-
mat [12], while for other chains, we expect a message signed
in CAIP-122 (Sign in with X) format [17]. The hub validates
the URI, signature and the nonce in the message. The re-
quest ID field of the message contains the public key of a
client-generated key, the session key. We use a session key
because it eliminates the need for the user to constantly au-
thorize signing prompts in their wallet. The hub responds
with an AuthResponse message, containing a challenge. The
frontend then responds with a ChallengeRequest, sign-
ing the challenge with the session key, and the authentica-
tion process is completed when the data hub responds with
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Method Description
Burrata Core Contract
checkClaim(claim, type)→ data Extract claim of type from array of claims claim and return unparsed data if present.
Burrata Registry Contract
getProviderIpfsHash(provider)→ ipfs_hash Return ipfs_hash for a provider public key.
getClaimIpfsHash(claim)→ ipfs_hash Return ipfs_hash for a hashed claim type.
Burrata Utility Library
extractClaimData(data, field)→ field_data Extract field from claim data and return field_data.

Figure 5: The Burrata contract API, showing the public APIs of the core contract, registry contract and utility library provided to
developers.

Method Description
auth(message)→ challenge Authenticate wallet with signed message and session key, returning a challenge.
challenge(signed)→ success Show signed challenge with session key, return success.
getClaim(type, format, data)→ claim Retrieve a claim of type in format, providing optional data.
onboard(type, format, data)→ payload Retrieve onboarding payload for type in format, providing optional data.

Figure 6: The Burrata Data Hub API. The API consists of RPCs driven by the frontend, so the auth() call consists of an
AuthRequest from the frontend and an AuthResponse from the data hub.

ChallengeResponse, indicating success.
Once the data hub is assured that the user possesses the

given wallet, it is ready to issue new claims. The frontend
calls GetClaimRequest with the type of claim requested,
the desired claim format, and any additional data needed to
issue the claim. If no user browser interaction is necessary
(for instance, the user has already finished the onboarding
process), then a GetClaimReponse is issued with the claim.
Otherwise, the frontend begins the onboarding process by call-
ing OnboardingRequest with the same data. The hub then
responds with an OnboardingResponse containing the URI
of the onboarding mechanism and a onboarding_payload.
Once complete, the frontend calls GetClaimRequest again
to retrieve the claim. Usually, in the onboarding request,
the backend associates the users wallet address (or hash
of), so that the users’ data can be retrieved the next time
GetClaimRequest is called. A few services do not permit ei-
ther association or search of metadata. In this case an external
key-value could be used (e.g. Redis) to store the association.

In some cases, the Web2 service may take some time to
update. For instance, an identity service may require manual
verification by a person. In this case, the hub responds with
a GetClaimResponsePending which informs the user when
they need to check back to retrieve the claim.

3.5.3 User Data Verification

To ensure that the data hub actually communicates with the
data source, user data verification enables a data hub to gen-
erate a proof that enables third parties with access to the
encrypted TLS session transcript to verify that the commu-
nication has actually taken place. Third parties never have
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Figure 7: The Burrata User Data Verification Architecture.
When validating onboarding from a Web2 data source, the
data hub establishes a three-way TLS session with a 3rd party
verifier, which observes the encrypted traffic. The data hub
generates a zero knowledge proof which the verifier signs,
and the verifcation is inserted into the service section of the
claim, which the Burrata core contract verifies.
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access to the raw data, rather, the data hub provides a zero
knowledge proof.

The overall architecture of the data hub’s user data verifi-
cation feature is shown in Figure 7. The data hub provides
a fetch()-like interface [23] to enable integrations to gen-
erate these proofs and to establish the required 3-way TLS
session. In addition to the parameters used for the fetch()
request, integration developers specify a schema, which is a
jq query [13] on the returned data and expected return result.
The data hub takes care of establishing the 3-way TLS session
and collecting signatures from verifiers. The returned claim
contains the signatures and hash of the schema used, which is
a hash of the jq query and hash of the expected query result.

When the Burrata contract has the service for user data
verification turned on, the contract checks that the signatures
matches what are expected for the service, and that the correct
schema and inputs were used.

Notably, when the data hub and the Web2 service belong
to the same trust domain (i.e., if the data hub is compromised,
then the Web2 service is comporomised), user data verification
can be turned off as an optimization.

3.6 Frontend
The frontend is responsible for managing a users’ claims,
authenticating the user and storing session keys, as well as
interacting with data hubs. While the frontend supports multi-
ple blockchains, the core abstractions (Figure 8) are designed
to be chain-agnostic so that support for new blockchains can
be easily added.

The dApp developer does not need to be aware of the fron-
tend internals: after initializing the library they simply call
getClaims() with target hub public key, claim type and re-
quest data.

3.6.1 Finding The Data Hub

The first task the frontend code must accomplish is finding the
data hub. To do this, the frontend locates the Burrata registry
contract and makes a call to getHubInfo() using the hub’s
public key. This returns an IPFS hash containing the data for
the hub. The frontend retrieves this page through IPFS [6],
which contains a list of all the current valid URIs of hubs
that can serve that claim type. The frontend then, for load
balancing, randomly selects a hub to connect to.

We could have chosen to publish the hub key to URI map-
ping on a Web2 page. However, using a contract keeps Burrata
decentralized, and a governance decision is required to update
the IPFS hash for each page.

This logic summarizes the EVM-based version of the fron-
tend. Due to differences in wallet implementations across
blockchains, the logic may slighty differ from chain to chain,
but abstractly, for each chain we implement getHubUrl(),
which returns a URL for a given public key.

3.6.2 Establishing a Data Hub Connection

Each data hub advertises a WebSocket which requires that
the client authenticate ownership of a wallet address. Most
wallets require user interaction every time data is signed,
which makes it difficult to create dynamic flows, and would
require user interaction every time a new data hub is accessed.
Instead, we opt for the user to sign a token which contains
a public key, and the corresponding private key is stored in
the browser’s local storage. When the frontend connects to a
hub, it follows the protocol described in section 3.5.2, using
the session key to authenticate. This authentication method is
similar to Sign-on-With-Ethereum and Sign-in-With-X.

Abstractly, the per-chain implementation needs to imple-
ment signTokenMessage(), which takes the token and signs
it with the user’s wallet.

3.6.3 Retrieving Web2 data

If the claim can be generated without input from the user,
the data hub can generate the claim without further input.
Most claims, however, will require data from the user. As we
indicated previously, it is important to note that the user’s data
is untrusted: we cannot directly embed data from the client
into a claim.

As outlined in section 3.5.1, the data hub can initiate an
onboarding flow, which passes an onboarding_payload to
the browser. The frontend presents the URL contained in this
payload, which could, for example, ask the user to login to
a page or sign a document. The data hub then issues a claim
based on the conditions configured for that integration.

The frontend saves retrieved claims in the browsers’ local
storage. The claims have a short expiration time, but the data
hub will “refresh” expired claims on request as long as they
have not been revoked.

Retrieving claim data is blockchain agnostic, but the pre-
sentation format can differ from chain to chain, as discussed in
section 3.2. The data is returned in the getClaim() function
as a byte array.

3.6.4 Submitting Data To The Contract

Once the claim data is retrieved, the developer adds the byte
array returned by getClaim() as a parameter to their contract
call. The checkClaim() call will revert if the claim is invalid,
and getClaim() can be called again to refresh the claim if
necessary.

4 Future Work

Burrata is a continual work in progress. Apart from constantly
adding support for new chains, we also plan on supporting
these new features in our immediate roadmap:
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Method Description
getHubUrl(public_key)→ ipfs_cid Get the ipfs_cid for the data hub with public_key.
signTokenMessage(message)→ signature Sign a message, returning the signature.
getClaimData(claim, type)→ claim_data Extract the claim_data from the claim of type, returning failure if the claim is invalid.
getClaimType()→ type Retrieve the type of claim required by this blockchain.

Figure 8: The Burrata Frontend Core Abstractions. Support for additional blockchains requires implementing these functions.

On-chain user data verification A number of new
blockchains, such as Sui [31] natively support zero knowl-
edge verification of algorithms such as Groth16 [16]. This
makes it possible to perform user data verification without
relying on third-party verifiers. Instead, the TLS transcript
can be submitted on-chain for verification.

In addition, in situations where Web2 data can be accessed
through multiple 3rd party verifiers, the data hub may not
need to provide a proof, since the verifiers can access the data
themselves.

Deeper Web2 integration Burrata data hubs already sup-
port outputting W3C standards compliant verified credentials
and decentralized identifiers, which have great use cases in
the Web2 environment as well. We plan on making a version
of the contract-level checkClaims() function available to
Web2 applications, both in the browser and in backends.

Self Sovereign Identity Self sovereign identity is an emerg-
ing paradigm which enables users to hold their identity cre-
dentials without relying on a third party to persist their data. A
number of solutions now exist: data stores such as Kepler [20],
Privy [29] and Ceramic [11] enable users to store their data
locally and authenticate with a number of providers, and Mi-
crosoft Entra [24] enables users to access identity through the
W3C Decentralized Identifier (DID) [33] standard.

Burrata already supports interoperability with these stan-
dards and generates W3C standardized VCs [34] and DIDs,
and users can already manually store their Burrata claims with
these providers. Future work includes deeper integration with
self-sovereign identity stacks and enabling users to store and
access Burrata claims seamlessly through these providers.

5 Conclusion

For Web3 to fulfill its promises, it must be able to seamlessly
operate on data from Web2. Burrata enables Web3 smart con-
tracts to consume Web2 data without increasing friction for
users or developers. Burrata also opens a path to many applica-
tions which need access to personal data efficiently on-chain.
We look forward to seeing the new classes of Web3 applica-
tions that Burrata enables.
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